Learning the decision function for speaker verification
نویسندگان
چکیده
This paper explores the possibility to replace the usual thresholding decision rule of log likelihood ratios used in speaker verification systems by more complex and discriminant decision functions based for instance on Linear Regression models or Support Vector Machines. Current speaker verification systems, based on generative models such as HMMs or GMMs, can indeed easily be adapted to use such decision functions. Experiments on both text dependent and text independent tasks always yielded performance improvements and sometimes significantly.
منابع مشابه
Using Exciting and Spectral Envelope Information and Matrix Quantization for Improvement of the Speaker Verification Systems
Speaker verification from talking a few words of sentences has many applications. Many methods as DTW, HMM, VQ and MQ can be used for speaker verification. We applied MQ for its precise, reliable and robust performance with computational simplicity. We also used pitch frequency and log gain contour for further improvement of the system performance.
متن کاملMulti-task learning for text-dependent speaker verification
Text-dependent speaker verification uses short utterances and verifies both speaker identity and text contents. Due to this nature, traditional state-of-the-art speaker verification approaches, such as i-vector, may not work well. Recently, there has been interest of applying deep learning to speaker verification, however in previous works, standalone deep learning systems have not achieved sta...
متن کاملUsing Exciting and Spectral Envelope Information and Matrix Quantization for Improvement of the Speaker Verification Systems
Speaker verification from talking a few words of sentences has many applications. Many methods as DTW, HMM, VQ and MQ can be used for speaker verification. We applied MQ for its precise, reliable and robust performance with computational simplicity. We also used pitch frequency and log gain contour for further improvement of the system performance.
متن کاملA Comparative Study on Kernel-Based Probabilistic Neural Networks for Speaker Verification
This paper compares kernel-based probabilistic neural networks for speaker verification based on 138 speakers of the YOHO corpus. Experimental evaluations using probabilistic decision-based neural networks (PDBNNs), Gaussian mixture models (GMMs) and elliptical basis function networks (EBFNs) as speaker models were conducted. The original training algorithm of PDBNNs was also modified to make P...
متن کاملSpeaker Verification with a Priori Threshold Determination Using Kernel-based Probabilistic Neural Networks
This paper compares kernel-based probabilistic neural networks for speaker verification. Experimental evaluations based on 138 speakers of the YOHO corpus using probabilistic decision-based neural networks (PDBNNs), Gaussian mixture models (GMMs) and elliptical basis function networks (EBFNs) as speaker models were conducted. The original PDBNN training algorithm was also modified to make PDBNN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001